Accurate Approximation in Weighted Maximum Norm by Interpolation

Ingrid Melinder

Department of Information Processing, The Royal Institute of Technology, S-100 44 Stockholm 70, Sweden Communicated by E. W. Cheney

Received May 4, 1976

1. The Main Idea

In this paper we will compare the weighted maximum error achieved by approximation defined by interpolation with weighted minimax criteria.

We use the following notation:
$p^{*}(x)$ is the interpolation polynomial on the net $\left\{x_{i}\right\}_{i=1}^{n}$;
$\hat{p}(x)$ (of degree $n-1$) is the weighted minimax approximation defined by

$$
\begin{equation*}
\max _{a \leqslant x \leqslant b} \rho(x)|f(x)-\hat{p}(x)| \leqslant \max _{a \leqslant x \leqslant b} \rho(x)|f(x)-p(x)| \tag{1}
\end{equation*}
$$

or

$$
\|f-\hat{p}\|_{\rho} \leqslant\|f-p\|_{\rho},
$$

where $p(x)$ is any polynomial of degree less than n and $\rho(x)$ is the weight function. $\rho(x)$ is positive but can be zero at the endpoints.
The error functions are

$$
e^{*}(x)=f(x)-p^{*}(x)
$$

and

$$
\hat{e}(x)=f(x)-\hat{p}(x),
$$

with

$$
M^{*}=\left\|e^{*}\right\|_{\rho} \quad \text { and } \quad \hat{M}=\|\hat{e}\|_{\rho} .
$$

Inequality (1) immediately gives $M^{*} \geqslant \hat{M}$.
We first state a theorem given by Gustafson [2] which generalizes a result by Powell [6].

Theorem 1.

$$
\frac{M^{*}}{\tilde{M}} \leqslant 1+\max _{a \leqslant x \leqslant b} \rho(x) \sum_{i=1}^{n} \frac{\left|l_{i}(x)\right|}{\rho\left(x_{i}\right)},
$$

where $l_{i}(x)$ is the polynomial of degree less than n which satisfies the relations

$$
\begin{aligned}
l_{i}\left(x_{j}\right) & =0, & & i \neq j \\
& =1, & & i=j
\end{aligned} \text { for } j=1,2, \ldots, n
$$

and $a<x_{i}<b$ for $i=1,2, \ldots, n$.
Proof. $\hat{e}(x)-e^{*}(x)=p^{*}(x)-\hat{p}(x)$ is a polynomial of degree less than n satisfying $\hat{e}\left(x_{i}\right)-e^{*}\left(x_{i}\right)=\hat{e}\left(x_{i}\right)$ for $i=1,2, \ldots, n$.

Then we have

$$
\hat{e}(x)-e^{*}(x)=\sum_{i=1}^{n} \hat{e}\left(x_{i}\right) l_{i}(x)
$$

and we get

$$
\begin{aligned}
\left|e^{*}(x)\right| & =\left|\hat{e}(x)-\sum_{i=1}^{n} \hat{e}\left(x_{i}\right) l_{i}(x)\right| \\
& =\left|\hat{e}(x)-\sum_{i=1}^{n} \frac{\rho\left(x_{i}\right)}{\rho\left(x_{i}\right)} \cdot \hat{e}\left(x_{i}\right) l_{i}(x)\right| \leqslant|\hat{e}(x)|+\hat{M} \sum_{i=1}^{n} \frac{\left|l_{i}(x)\right|}{\rho\left(x_{i}\right)}
\end{aligned}
$$

Multiplying by $\rho(x)$ and maximizing we get

$$
\begin{align*}
& M^{*} \leqslant \hat{M}+\hat{M} \max _{a \leqslant x \leqslant b} \rho(x) \sum_{i=1}^{n} \frac{\left|l_{i}(x)\right|}{\rho\left(x_{i}\right)} \\
& \frac{M^{*}}{\hat{M}} \leqslant 1+\max _{a \leqslant x \leqslant b} \rho(x) \sum_{i=1}^{n} \frac{\left|l_{i}(x)\right|}{\rho\left(x_{i}\right)}
\end{align*}
$$

Now, let the interpolation operator be L. Then the norm of L is

$$
\|L\|_{\rho}=\max _{a \leqslant x \leqslant b} \rho(x) \sum_{i=1}^{n} \frac{\left|l_{i}(x)\right|}{\rho\left(x_{i}\right)}
$$

the same number which occurs in Theorem 1. $\|L\|_{0}$ can immediately be applied to bound the influence of rounding errors in the function values:

$$
\left\|p^{*}(x)-\tilde{p}(x)\right\|_{o} \leqslant \epsilon \cdot \max _{a \leqslant x \leqslant b} \rho(x) \sum_{i=1}^{n} \frac{\left|l_{i}(x)\right|}{\rho\left(x_{i}\right)},
$$

where ϵ is an upper bound of the modulus of the rounding errors in the function values and $\tilde{p}(x)$ is the interpolation polynomial in the approximate function values. For $\rho(x) \equiv 1$ this was shown in [5].

2. A Specific Class of Weight Functions

In this section we discuss how to choose the interpolation points when the weighted maximum norm of $h(x)$ is defined as

$$
\|h(x)\|_{\rho}=\max _{-1 \leqslant x \leqslant 1}(1-x)^{\alpha}(1+x)^{\beta}|h(x)| .
$$

Our problem is to choose the net $\left\{x_{i}\right\}_{i=1}^{n}$ so that M^{*} / \hat{M} is "close" to 1 . The numerical experiments lead us to choose the zeros of $P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(x)$, where $P_{n}^{(\alpha, \beta)}(x)$ is the Jacobi polynomial of degree n with weightfunction $(1-x)^{\alpha}(1+x)^{2}$. Doing so we get a near optimal solution. In Theorem 2 an asymptotic limit value when $n \rightarrow \infty$ is given for M^{*} / \hat{M}. This limit value is independent of α and β. Note that for $\alpha=\beta=0$ we get the well-known Chebyshev abscissas and the result of Powell [6].

To show Theorem 2 we need some lemmas. Most of these results can be found in [7]. We use the following notations:
$P_{n}^{(\alpha, \beta)}(x)$ is the Jacobi polynomial of degree n with weight function $(1-x)^{\alpha}(1+x)^{\beta}$,
$J_{\alpha}(x)$ is the Bessel function of first kind of order α,
$\Gamma(x)$ is the Gamma function,
$A(n) \sim B(n)$ in the sense that the ratio of $A(n) / B(n) \rightarrow 1$ as $n \rightarrow \infty$.

Lemma 1 [see 7, Theorem 8.21.12 and formula (4.1.1)]. Let $\alpha>-1$ and β be arbitrary and real. Then we have

$$
\begin{aligned}
\left(\sin \frac{\theta}{2}\right)^{\alpha}\left(\cos \frac{\theta}{2}\right)^{\beta} P_{n}^{(\alpha, \theta)}(\cos \theta)= & N^{-\alpha} \frac{\Gamma(n+\alpha+1)}{n!}\left(\frac{\theta}{\sin \theta}\right)^{1 / 2} J_{\alpha}(N \theta) \\
& +\theta^{1 / 2} O\left(n^{-3 / 2}\right) \quad \text { if } \quad 0<\theta \leqslant \pi-\epsilon
\end{aligned}
$$

and

$$
P_{n}^{(\alpha, \beta)}(1)=\binom{n+\alpha}{n}
$$

where $N=n+(\alpha+\beta+1) / 2 ; \epsilon$ is a fixed positive number.

Lemma 2 (see [7, Theorem 7.32.4]). Let α and β be arbitrary and real; c is a fixed positive constant. Then

$$
\left\{\frac{d}{d x} P^{(\alpha, \theta)}(x)\right\}_{x=\cos \theta} \sim \begin{cases}\theta^{-\alpha-z} \mathcal{O}\left(n^{1 / 2}\right) & \text { if } \frac{c}{n} \leqslant \theta \leqslant \frac{\pi}{2} \\ \mathcal{O}\left(n^{\alpha+2}\right) & \text { if } 0 \leqslant \theta \leqslant \frac{c}{n}\end{cases}
$$

Lemma 3 (see [7, Theorem 8.9.1]). Let $\alpha>-1$ and $\beta>-1$ and let $0<\theta_{1}<\theta_{2}<\cdots<\theta_{r} \leqslant \pi / 2$ be zeros of $P_{n}^{(\alpha, \beta)}(\cos \theta)$. Then

$$
\left|\frac{d}{d x} P_{n}^{(\alpha, \beta)}\left(\cos \theta_{\nu}\right)\right| \sim \nu^{-\alpha-\frac{3}{2}} \mathcal{O}\left(n^{\alpha+2}\right), \quad v=1,2, \ldots, r
$$

Lemma 4 (see [1, formula (6.1.46)]).

$$
\lim _{n \rightarrow \infty} n^{b \sim a} \frac{\Gamma(n+a)}{\Gamma(n+b)}=1
$$

Note. Putting $a=2 \alpha+\frac{1}{2}$ and $b=1$ in Lemma 4 we get

$$
\lim _{n \rightarrow \infty} \frac{\Gamma\left(n+2 \alpha+\frac{1}{2}\right)}{n!n^{2 \alpha-\frac{1}{2}}}=1 \quad \text { since } \quad \Gamma(n+1)=n!
$$

Lemma 5 (see [7, formula (1.71.7)]). The following asymptotic formula holds:

$$
J_{\alpha}(z)=\left(\frac{2}{\pi z}\right)^{1 / 2} \cos \left(z-\alpha \frac{\pi}{2}-\frac{\pi}{4}\right) \div \mathscr{O}\left(z^{-3 / 2}\right) \quad \text { as } \quad z \rightarrow \infty
$$

Note that

$$
\left|J_{\alpha}(z)\right| \leqslant\left(\frac{2}{\pi|z|}\right)^{1 / 2}+\left|\mathcal{O}\left(z^{-3 / 2}\right)\right| \sim\left(-\frac{2}{\pi}\right)^{1 / 2}|z|^{-1 / 2}
$$

Lemma 6 (see [7, Theorem 8.9.1, formula (8.9.5), Theorem 8.1.2, and formula (8.1.4)]). Let $\alpha>-1, \beta>-1$, and let $0<\theta_{1}<\theta_{2}<\cdots<$ $\theta_{n}<\pi$ be the zeros of $P_{n}^{(\alpha, \beta)}(\cos \theta)$. Then $\theta_{i}=(i \pi+\mathcal{O}(1)) / n$, with $\mathcal{O}(1)$ being uniformly bounded for all values of $i=1,2, \ldots, n ; n=1,2,3, \ldots$. If $\alpha=0$, then

$$
\theta_{i}=\frac{\left(i-\frac{1}{4}\right) \pi+o(1)}{n}, \quad i=1,2, \ldots, n
$$

Furthermore,

$$
\frac{d}{d \theta}\left\{P_{n}^{(\alpha, \beta)}(\cos \theta)\right\} \sim \mathcal{O}\left(n^{1 / 2}\right)\left(\sin \frac{\theta}{2}\right)^{-\alpha-\frac{1}{2}}\left(\cos \frac{\theta}{2}\right)^{-\beta-\frac{1}{2}}
$$

The zeros from a fixed interval in the interior of $[0, \pi]$ can be written in a more precise form.

Lemma 7 (see [7, formulas (8.9.8) and (8.8.1)]). Let $\left\{\cos \theta_{i}\right\}_{i=1}^{n}$ be the zeros of $P_{n}^{(\alpha, \beta)}(x)$ in the interval $[\epsilon, \pi-\epsilon]$, where ϵ is a fixed positive number and $\alpha>-1, \beta>-1$. Then

$$
\theta_{i}=\left(\left(i-\frac{1}{2}\right) \pi-\gamma+k \pi+\epsilon_{n}\right) / N
$$

where

$$
\begin{aligned}
& \gamma=-\left(\alpha+\frac{1}{2}\right)(\pi / 2) \\
& N=n+(\alpha+\beta+1) / 2
\end{aligned}
$$

$$
k \text { is an integer independent of } i \text { and } n,
$$

$$
\epsilon_{n} \rightarrow 0 \quad \text { when } \quad n \rightarrow \infty
$$

Furthermore,

$$
\left|\frac{d}{d \theta}\left\{P_{n}^{(\alpha, \beta)}(\cos \theta)\right\}\right|_{\theta=\theta_{i}} \sim \pi^{-1 / 2} n^{1 / 2}\left(\sin \frac{\theta_{i}}{2}\right)^{-\alpha-\frac{1}{2}}\left(\cos \frac{\theta_{i}}{2}\right)^{-\beta-\frac{1}{2}}
$$

Note that

$$
\left|\sin \left(N \theta_{i}+\gamma\right)\right|=\left|\sin \left(N \cdot \frac{\left(i-\frac{1}{2}\right) \pi-\gamma+k \pi+\epsilon_{n}}{N}+\gamma\right)\right| \sim 1
$$

Lemma 8. Let $\left\{\cos \theta_{i}\right\}_{i=1}^{n}$ be the zeros of $P_{n}^{(\alpha, \beta)}(x)$ and let $\theta \in(0, \pi)$ be fixed. Then

$$
\sum_{\left|\cos \theta-\cos \theta_{i}\right| \geqslant 1 / n}\left|\frac{\sin \theta_{i}}{\cos \theta-\cos \theta_{i}}\right| \sim \frac{2}{\pi} n \ln n
$$

Proof. For brevity we write c for $\cos \theta, c_{i}$ for $\cos \theta_{i}$, and s_{i} for $\sin \theta_{i}$. Let δ be a positive fixed number such that $-1+\delta<\cos \theta<1-\delta$. Then for $n>1 / \delta$

$$
\begin{aligned}
\sum_{\left|c-c_{i}\right| \geqslant 1 / n}\left|\frac{s_{i}}{c-c_{i}}\right| & =\sum_{\left|c-c_{i}\right|>\delta}\left|\frac{s_{i}}{c-c_{i}}\right|+\sum_{1 / n \leqslant\left|c-c_{i}\right| \leqslant \delta}\left|\frac{s_{i}}{c-c_{i}}\right| \\
& =\mathcal{O}(n)+\sum_{1 / n \leqslant\left|c-c_{i}\right| \leqslant \delta}\left|\frac{s_{i}}{c-c_{i}}\right|
\end{aligned}
$$

Now we know from Lemma 7 that $\theta_{i}=\left(i \pi+k_{1}+\epsilon_{n}(i)\right) /\left(n+k_{2}\right)$, where k_{1} and k_{2} are independent of i and n and $\epsilon_{n}(i) \rightarrow 0$ when $n \rightarrow \infty$.

We now determine

$$
S_{\theta}=\sum_{1 / n \leqslant\left|c-c_{i}\right| \leqslant \delta}\left|\frac{s_{i}}{c-c_{i}}\right|
$$

using the Euler-MacLaurin formula with a strict error bound

$$
\left|\sum_{i=1}^{n} f(i)-\int_{1}^{n} f(t) d t\right| \leqslant \frac{1}{2}|f(1)+f(n)|+\frac{2}{12} \int_{1}^{n}\left|\frac{d^{2} f(t)}{d t^{2}}\right| d t
$$

We split the interval $1 / n \leqslant\left|c-c_{i}\right| \leqslant \delta$ into two parts such that

$$
S_{\theta}=\sum_{i=v_{1}}^{v_{2}} s_{i} /\left(c-c_{i}\right)+\sum_{i=v_{3}}^{v_{4}} s_{i} /\left(c_{i}-c\right)
$$

Now,

$$
\frac{s_{i}}{c-c_{i}}-\frac{\sin \left(\left(i \pi+k_{1}\right) / n\right)}{c-\cos \left(\left(i \pi+k_{1}\right) / n\right)}=o(1) \cdot \frac{\sin \left(\left(i \pi+k_{1}\right) / n\right)}{c-\cos \left(\left(i \pi+k_{1}\right) / n\right)}
$$

which can be seen by writing

$$
s_{i}=\sin \frac{i \pi+k_{1}}{n+k_{2}} \cdot \cos \frac{\epsilon_{n}(i)}{n+k_{2}}+\cos \frac{i \pi+k_{1}}{n+k_{2}} \cdot \sin \frac{\epsilon_{n}(i)}{n+k_{2}}
$$

using the McLaurin expansions of

$$
\cos \frac{\epsilon_{n}(i)}{n+k_{2}} \quad \text { and } \quad \sin \frac{\epsilon_{n}(i)}{n+k_{2}}
$$

and finally using the fact that $c-c_{i}>1 / n$.
Hence

$$
\begin{aligned}
\sum_{i=\nu_{1}}^{\nu_{2}} \frac{s_{i}}{c-c_{i}} & =(1+o(1)) \sum_{i=v_{1}}^{\nu_{2}} \frac{\sin \left(\left(i \pi+k_{1}\right) / n\right)}{\cos \theta-\cos \left(\left(i \pi+k_{1}\right) / n\right)} \\
& =(1+o(1))\left(\int_{\nu_{2}}^{\nu_{1}} \frac{\sin \left(\left(t \pi+k_{1}\right) / n\right)}{\cos \theta-\cos \left(\left(t \pi+k_{1}\right) / n\right)} d t+R(n)\right) \\
& \sim(n / \pi)\left(\ln \left(\cos \theta-\cos \theta_{\nu_{1}}\right)-\ln \left(\cos \theta-\cos \theta_{\nu_{2}}\right)\right)
\end{aligned}
$$

while

$$
\begin{aligned}
R(n) \mid \leqslant & \frac{1}{2}\left(\frac{\sin \left(\left(\nu_{1} \pi+k_{1}\right) / n\right)}{\cos \theta-\cos \left(\left(v_{1} \pi+k_{1}\right) / n\right)}+\frac{\sin \left(\left(\nu_{2} \pi+k_{1}\right) / n\right)}{\cos \theta-\cos \left(\left(\nu_{2} \pi+k_{1}\right) / n\right)}\right) \\
& +\frac{2}{12} \int_{v_{1}}^{\nu_{2}}\left|\frac{d^{2}}{d t^{2}}\left\{\frac{\sin \left(\left(t \pi+k_{1}\right) / n\right)}{\cos \theta-\cos \left(\left(t \pi+k_{1}\right) / n\right)}\right\}\right| d t \sim \mathcal{O}(n)
\end{aligned}
$$

since $\left|c-c_{i}\right| \geqslant 1 / n$, and hence negligible.

In the same way we get

$$
\sum_{i=r_{3}}^{\nu_{4}} \frac{s_{i}}{c_{i}-c} \sim \frac{n}{\pi}\left(\ln \left(\cos \theta-\cos \theta_{v_{4}}\right)-\ln \left(\cos \theta-\cos \theta_{\nu_{3}}\right)\right)
$$

and finally

$$
\begin{align*}
S_{\theta} & \sim \frac{n}{\pi} \ln \left(\frac{\cos \theta-\cos \theta_{\nu_{1}}}{\cos \theta-\cos \theta_{\nu_{2}}} \cdot \frac{\cos \theta-\cos \theta_{\nu_{4}}}{\cos \theta-\cos \theta_{v_{3}}}\right) \\
& \sim \frac{n}{\pi} \ln \frac{\delta \cdot \delta}{(1 / n) \cdot(1 / n)} \sim \frac{2}{\pi} n \ln n .
\end{align*}
$$

Theorem 2. Let the netpoints $\left\{x_{i}\right\}_{i-1}^{n}$ be the zeros of $P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(x)$ and $\rho(x)=(1-x)^{\alpha}(1+x)^{\beta}, \alpha \geqslant 0$, and $\beta \geqslant 0$. Then

$$
\max _{-1 \leqslant x<1} \rho(x) \sum_{i=1}^{n} \frac{\left|l_{i}(x)\right|}{\rho\left(x_{i}\right)} \sim \frac{2}{\pi} \ln n .
$$

Proof. Since $P_{n}^{(\alpha, \beta)}(x)=(-1)^{n} P_{n}^{(\beta, \alpha)}(-x)$ we only study x belonging to [0, 1]. Put $x=\cos \theta$ which gives $\rho(x)=2^{\alpha+\beta} \sin ^{2 \alpha}(\theta / 2) \cos ^{2 \beta}(\theta / 2)$, where $\theta \in[0, \pi / 2]$. We put

$$
\begin{aligned}
K(x) & =\rho(x) \sum_{i=1}^{n} \frac{\left|l_{i}(x)\right|}{\rho\left(x_{i}\right)} \\
& =\rho(x)\left|P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(x)\right| \sum_{i=1}^{n} \frac{1}{\left|x-x_{i}\right| \rho\left(x_{i}\right)\left|P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}\left(x_{i}\right)\right|} .
\end{aligned}
$$

We first look at $A(x)=\rho(x)\left|P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(x)\right|$ when $0 \leqslant x<1$.

$$
\begin{align*}
A(x)= & 2^{\alpha+\beta} \sin ^{2 a} \frac{\theta}{2} \cos ^{2 \beta} \frac{\theta}{2}\left|P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(x)\right| \\
= & \left.2^{\alpha+\beta} \sin ^{1 / 2} \frac{\theta}{2} \cos ^{1 / 2} \frac{\theta}{2} \right\rvert\, \frac{\Gamma\left(n+2 \alpha+\frac{1}{2}\right)}{N^{2 \alpha-\frac{1}{2}} n!} \\
& \left.\cdot\left(\frac{\theta}{\sin \theta}\right)^{1 / 2} J_{2 \alpha-\frac{1}{2}}(N \theta)+\mathcal{O}\left(n^{-3 / 2}\right) \right\rvert\, \\
= & 2^{\alpha+\beta-\frac{1}{2}} \sin ^{1 / 2} \theta \left\lvert\, \frac{\left(n+2 \alpha-\frac{1}{2}\right)!}{(n+\alpha+\beta)^{2 \alpha-\frac{1}{2}} n!} \cdot \frac{\theta^{1 / 2}}{\sin ^{1 / 2} \theta}\right. \\
& \left.\cdot J_{2 \alpha-\frac{1}{2}}(N \theta)+\mathcal{O}\left(n^{-3 / 2}\right) \right\rvert\, \tag{2}
\end{align*}
$$

according to Lemma 1 , where $N \cdots n+\alpha+\beta$. If we now use Lemmas 4 and 5 we get

$$
\max _{0 \leqslant x<1} A(x) \sim 2^{\alpha+\beta-\frac{1}{2}} \theta^{1 / 2}(2 / \pi)^{1 / 2}(1 / N \theta)^{1 / 2}=2^{\alpha+\beta} \pi^{-1 / 2} n^{-1 / 2}
$$

Putting $K(x)=A(x) \cdot B(x)$, we next look at $B(x)=\sum_{i=1}^{n} 1 / B_{i}(x)$, where

$$
\begin{aligned}
B_{i}(x)= & x-x_{i} \rho\left(x_{i}\right) P_{n}^{\prime\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}\left(x_{i}\right) \\
= & x-x_{i} 2^{\alpha+\beta} \sin ^{2 \alpha}\left(\theta_{i} / 2\right) \cos ^{2 \beta}\left(\theta_{i} / 2\right) \sin ^{-1} \theta_{i} \\
& \cdot\left|\frac{d}{d \theta} P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(\cos \theta)\right|_{\theta=\theta_{i}} .
\end{aligned}
$$

Now let δ be a positive fixed number and let $x \in[0,1-\delta]$.
We first study $B_{i}(x)$ when $\left|x-x_{i}\right|>\delta$. Then $B_{i}(x) \gtrsim \delta \cdot \sin ^{-1} \theta_{i} \mathcal{O}\left(n^{1 / 2}\right)$ according to Lemma 6 . Hence $\sum_{\left|x-x_{i}\right|>\delta}\left(1 \mid B_{i}(x)\right) \leqq \mathcal{O}\left(n^{1 / 2}\right)$. Next we study $B_{i}(x)$ for $1 / n \leqslant\left|x-x_{i}\right| \leqslant \delta$. Using Lemma 7 we get

$$
B_{i}(x) \sim\left|x-x_{i}\right| 2^{x+\beta} \sin ^{-1} \theta_{i} n^{1 / 2} \pi^{-1 / 2}
$$

Now Lemma 8 gives

$$
\begin{aligned}
\sum_{1 / n \leqslant x-x_{i} \leqslant \delta} \frac{1}{B_{i}(x)} & \sim 2^{-(\alpha+\beta)} n^{-1 / 2} \pi^{+1 / 2} \cdot \frac{2}{\pi} n \ln n \\
& \sim 2^{-(\alpha+\beta)+1} \pi^{-1 / 2} n^{1 / 2} \ln n
\end{aligned}
$$

It remains to study $\sum_{\left|x-x_{i}\right|<1 / n}\left(1 / B_{i}(x)\right)$. Since $A(x)$ is small for these values we consider $A(x) \sum_{\left|x-x_{i}\right|<1 / n}\left(1 / B_{i}(x)\right)$. Trivially this term is zero for $x=x_{i}$, $i=1,2, \ldots, n$. Now Lemma 7 gives

$$
\theta_{i}=\frac{i \pi+k_{1}+\epsilon_{n}(i)}{n+k_{2}}
$$

k_{1} and k_{2} are independent of i, and n and $\epsilon_{n}(i) \rightarrow 0$ when $n \rightarrow \infty$, and hence there is an n_{0} such that $\left|x-x_{i}\right|<1 / n$ can hold for at most $\sin ^{-1} \delta$ terms if $n>n_{0}$.

We study any of these, say $A(x) / B_{p}(x)$, and use the Taylor expansion of $P(x)=P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(x)$ and $\rho(x)$.

$$
\begin{aligned}
\frac{A(x)}{B_{p}(x)} & =\frac{\rho(x) \mid P(x)}{\rho\left(x_{p}\right)\left|x-x_{p}\right|\left|P^{\prime}\left(x_{p}\right)\right|} \\
& =\frac{\rho\left(x_{p}\right)+\left(x-x_{p}\right) \rho^{\prime}(\xi)}{\rho\left(x_{p}\right)} \cdot \frac{P\left(x_{p}\right)+\left(x-x_{p}\right) P^{\prime}(\eta)}{x-x_{p}| | P^{\prime}\left(x_{p}\right) \mid} \\
& \leqslant(1+\mathbb{C}(1 / n)) \cdot \mathscr{C}(1) \sim \mathscr{O}(1),
\end{aligned}
$$

where $\left|x_{p}-\xi\right|<1 / n$ and $\left|x_{v}-\eta\right|<1 / n$, since $P\left(x_{p}\right)=0$ and according to Lemmas 2, 3, and 7,

$$
\begin{aligned}
P^{\prime}(\cos \theta) & \sim \theta^{-2 \alpha-1} \cdot \mathcal{O}\left(n^{1 / 2}\right), \quad \text { for } \quad 1 / n \leqslant \theta \leqslant \pi / 2, \\
P^{\prime}\left(\cos \theta_{p}\right) & \sim p^{-2 \alpha-1} \mathcal{O}\left(n^{2 \alpha+3 / 2}\right),
\end{aligned}
$$

and hence

$$
\frac{P^{\prime}(\eta)}{P^{\prime}\left(x_{p}\right)} \sim \frac{\mathscr{C}\left(n^{1 / 2}\right)}{\left(\left(p \pi+k_{1}+\epsilon_{n}\right) / n\right)^{2 \alpha+1}} \cdot \frac{p^{2 \alpha+1}}{n^{2 \alpha+1}} \sim \mathscr{C}(1) .
$$

Thus

$$
\sum_{\mid x-x_{i}^{i} \leqslant 1 / n} \frac{A(x)}{B_{i}(x)} \sim \mathcal{O}(1)
$$

and

$$
\begin{aligned}
\max _{0 \leqslant x \leqslant 1-\delta} K(x) & \sim 2^{\alpha+\beta} \pi^{-1 / 2} n^{-1 / 2}\left(\mathcal{O}\left(n^{1 / 2}\right)+2^{-(\alpha+\beta)+1} \pi^{-1 / 2} n^{1 / 2} \ln n\right)+\mathcal{O}(1) \\
& \sim \frac{2}{\pi} \ln n .
\end{aligned}
$$

Now since δ is an arbitrary positive number we have shown the asymptotic behavior for $x \in[0,1)$. It only remains to study $K(x)$ for $x=1$. If $\alpha>0$ then $K(1)=0$ since $\rho(1)=(1-1)^{\alpha}(1+1)^{\beta}$. If $\alpha=0$ then we know by Lemmas 1 and 4 that

$$
A(1)=2^{\beta}\binom{n-\frac{1}{2}}{n}=2^{\beta} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1) \Gamma\left(\frac{1}{2}\right)} \sim 2^{\beta} \pi^{-1 / 2} n^{-1 / 2}
$$

and by Lemma 6 that $\theta_{i}=(i \pi+k+o(1)) / n$ for all θ_{i} and hence Lemma 8 holds for $x \in[0,1]$ and $K(1) \lesssim(2 / \pi) \ln n$. This ends the proof.

Now we can see why it is fruitful to choose the zeros of $P^{\left(2 x-\frac{1}{2}, 28-\frac{1}{2}\right)}(x)$ instead of those of $P^{(2 \alpha, 28)}(x)$ which were proposed in [4].
The proof of Theorem 2, formula (2), shows that the factor $2^{1 / 2} \sin ^{1 / 2}(\theta / 2)$ $\cos ^{1 / 2}(\theta / 2)=\sin ^{1 / 2} \theta$ cancels the same factor in the denominator of the asymptotic behavior of $P^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(x)$ which would otherwise contribute a factor $\mathbb{O}\left(n^{1 / 2}\right)$ to the result. In Section 3 we can compare the estimates using the two different sets of abscissas.

3. Numerical Application

We consider the same example as in $[3,4]$, numerical computation of the Fourier transform,

$$
\left.\begin{array}{rl}
G(w) & =\operatorname{Re}\left\{e^{-0.5 i w} \int_{0.5}^{\infty} e^{i w t} f(t) d t\right.
\end{array}\right\},
$$

f is completely monotonic in the interval $\left(e^{-1}-1, \infty\right)$. According to a well-known theorem by Bernstein we can then write

$$
f(t)=\int_{0}^{x} e^{-x(t+0.5)} d x(x), \quad t \geqslant-0.5>e^{-1}-1, \quad \alpha \text { increasing }
$$

see [8, Theorem 12a].
Hence

$$
\int_{0}^{\infty}|d x(x)|=\int_{0}^{\infty} d \alpha(x)=f(-0.5)
$$

We assume that the numerical values of f are given at equidistant points $t_{1}, t_{2}, \ldots, t_{n}$, where $t_{j}=0.5+j h$. As shown in [3] we can write

$$
\begin{gathered}
G(w)=\int_{0}^{1} \psi\left(\lambda ; w^{\prime}\right) \rho(\lambda) d \beta(\lambda), \\
\int_{0}^{1} \lambda^{j-1} \rho(\lambda) d \beta(\lambda)=f\left(t_{j}\right), \quad j=1,2, \ldots, n
\end{gathered}
$$

where

$$
\begin{aligned}
& \psi(\lambda ; w)=\operatorname{Re}\{-h /(\ln \lambda+i h w)\} \\
& \rho(\lambda)=\lambda^{1 / h}
\end{aligned}
$$

β is of bounded variation over [0,1] but is not assumed to be known as an analytical expression,

$$
\int_{0}^{1}|d \beta(\lambda)|=\int_{0}^{1} d \beta(\lambda)=f(-0.5) .
$$

We select n points $\left\{\lambda_{k}\right\}_{k=1}^{n}$ and construct a mechanical quadrature rule

$$
G(w) \approx \sum_{k=1}^{n} m_{k} \psi\left(\lambda_{k} ; w\right)
$$

where the weights m_{k} are determined such that

$$
\sum_{k=1}^{n} m_{k} \lambda_{k}^{j-1}=f\left(t_{j}\right), \quad j=1,2, \ldots, n .
$$

Our strategy for choosing $\left\{\lambda_{k}\right\}_{k=1}^{n}$ is independent of ψ and determined by ρ only. Let Q be the polynomial of degree less than n which interpolates ψ at $\left\{\lambda_{k}\right\}_{k=1}^{n}$. We want to make

$$
\max _{0 \in \lambda \leqslant 1} \rho(\lambda)|\psi(\lambda ; w)-Q(\lambda)|, \quad \text { small for a fixed } w
$$

Since $\rho(\lambda)=\lambda^{1 / h}, \lambda \in[0,1]$ we use the zeros of the nth degree transformed Jacobi polynomial corresponding to the weightfunction $\lambda^{2 / h-\frac{1}{2}}$ in accordance with Section 2.

Numerical experiments indicate that the gain in using the actual minimizing polynomial is quite modest, as illustrated in the Table I.

TABLE I

	Improvement factor		
n	1	2	3
2	2.7	3.7	5.1
4	3.1	5.1	3.2
6	3.4	6.2	3.2
8	3.5	7.1	3.1
10	3.7	7.9	10.6
12	3.8	8.6	11.8

Table I shows estimates of the improvement factor M^{*} / \hat{M}, defined in Theorem 1. In columns 1 and 2 the abscissas are the zeros of the n th-degree transformed Jacobi polynomial with weightfunction $\lambda^{2 / h-\frac{1}{3}}$ and $\lambda^{2 / h}$, respectively, and the improvement factor is calculated from Theorem 1. Column 3 shows the results of the theory in [4]. Here the improvement factor is computed as

$$
\left.\|\psi-Q\|_{0}\right|_{1 \leqslant j \leqslant n+1} \mid e\left(\xi_{j}\right) \|,
$$

where

$$
e(\lambda)=\rho(\lambda)(\psi(\lambda ; w)-Q(\lambda))
$$

and $\left\{\xi_{j}\right\}_{j=1}^{n+1}$ are points such that
(i) $\left|e\left(\xi_{j}\right)\right|$ is a local maximum of the error curve,
(ii) $e\left(\xi_{j}\right) e\left(\xi_{j+1}\right)<0, j=1,2, \ldots, n$.

Observe that the estimate according to Theorem 1 is independent of ψ in contrast to the estimate suggested in [4].

We report our results for the case $w=10, h=1 / 8$ in Table I. As expected, the improvement factors in column 2 are much larger than those in column 1, since the asymptotic behavior is $\mathcal{O}\left(n^{1 / 2} \ln n\right)$ compared to $\mathcal{O}(\ln n)$.

4. Numerical Results

In this section, some results are given from numerical computation of the improvement factor M^{*} / \hat{M} defined in Theorem 1. Three different kinds of the weightfunction $\rho(x)$ have been considered.

In Table II, $\rho(x)=(1-x)^{2}(1+x)^{\beta}$ and $x \in[-1,1]$. We choose the net $\left\{x_{i}\right\}_{i=1}^{n}$ to be zeros of $P_{n}^{\left(2 \alpha-\frac{1}{2}, 2 \beta-\frac{1}{2}\right)}(x)$, where $P_{n}^{(\alpha, \beta)}(x)$ is the Jacobi polynomial with weightfunction $(1 \cdots x)^{2}(1+x)^{8}$. As we can see, these estimates do not vary much with α and β. We also notice that the improvement factor does not yet agree with the asymptotic expression $1+(2 / \pi) \ln n, n \leqslant 90$. For larger n we cannot compute any reliable value. Furthermore, we have not found any improvement factor greater than $5 ; \alpha=0(1) 10, \beta: O(1) 10$.

TABLE II

lmprovement factor				
n	$\alpha=0, \beta=0 \alpha=6, \beta=3 \alpha=12, \beta=01+(2, \pi) \ln n$			
10	3.4	3.2	3.5	2.5
20	3.9	3.6	3.9	2.9
50	4.5	4.1	4.2	3.5
70	4.7	4.3	4.4	3.7
90	4.8	4.4	4.5	3.9

In Table III, $\rho(x)=e^{-x^{2}}$ and $x \in[-\infty, \infty]$. We choose the net $\left\{x_{i}\right\}_{i=1}^{n}$ to be the zeros of the orthogonal polynomial associated with weightfunction $e^{-2 x^{2}}$ on the interval $[-\infty, \infty]$. We see that the interpolation polynomials are close to the best; the improvement factor is less than 4 if $n \leqslant 20$.

TABLE III

N	Improvement factor
2	2.3
4	2.7
6	3.0
8	3.2
10	3.3
12	3.4
14	3.5
16	3.6
18	3.7
20	3.7

In Table IV, $\rho(x)=e^{-x}$ and $x \in[0, \infty]$. We choose the net $\left\{x_{i}\right\}_{i=1}^{n}$ to be the zeros of the orthogonal polynomial associated with weightfunction $e^{-2 x}$ on the interval $[0, \infty]$. From the table we see that the improvement factor is of modest size.

TABLE IV

N	Improvement factor
2	3.8
4	5.4
6	6.7
8	7.8
10	8.8

Acknowledgments

I wish to thank my supervisor Docent Sven-Åke Gustafson for suggesting the problem and continuing interest. My thanks are also due to my colleague Jesper Oppelstrup for most inspiring discussions on this problem.

References

1. M. Abramowitz and I. A Stegun, "Handbook of Mathematical Functions," Dover, New York, 1965.
2. S.-Å. Gustafson, "Numerical Computation of Linear Functionals," Pub. 72-06, Univ. Central de Venezuela, Facultad de Ciencias Departamento de Computacion, Caracas, 1972.
3. G. Dahlquist and S.-Å. Gustafson, "On the Computation of Slowly Convergent Fourier Integrals," Report NA 71.27, Dept. of Information Processing, The Royal Institute of Technology, S-100 44 Stockholm, 1971.
4. S.-Å. Gustafson and I. Melinder, Computing Fourier integrals by means of nearoptimal quadrature rules of the Lagrangian type, Computing 11 (1973), 23-26.
5. J. H. McCabe and G. M. Phillips, On a certain class of Lebesgue constants, BIt 13 (1973), 434-442.
6. M. J. D. Powell, On the maximum errors of polynomial approximation defined by interpolation and by least squares criteria, Comput. J. 9 (1967), 404-407.
7. G. Szegö, "Orthogonal Polynomials," Amer. Math. Soc., Providence, R.I., 1959.
8. D. Widder, "The Laplace Transform," Princeton Univ. Press, Princeton, N.J., 1946.
